1、左图。
S△ABC( 黑线 ) = S□AFED - ( S△ACF + S△BCE + S△ABD )
= 5 * 4 - ( 4 * 2 + 3 * 2 + 5 * 2 )/2
= 20 - 12
= 8
2、㈠ AC平分□AFCQ,由1,已知S△ACF = 4,S△ACQ = 4,故 Q ( 1,2 );
㈡ Q为直线 y = x + 1 在一象限上任意一点;
① 当 x < 1 时( 图中粉线 );
S△ACQ = S△APQ + S△APC
= AP( 1 - x )/2 + AP * ( 5 - 1 )/2
= AP( 1 - x + 4 )/2
= AP( 5 - x )/2;
直线 CQ y = ax + b,在点C, 5a + b = 2,b = 2 - 5a,y = ax - 5a + 2;
在点Q,ax - 5a + 2 = x + 1,a( x - 5 ) = x - 1,a = ( x - 1 )/( x - 5 );
a 表达式中的 x 是 点Q 的 x 值;
在点P,x1 = 1,AP = y = ( x - 1 )/( x - 5 ) - 5( x - 1 )/( x - 5 ) + 2( x - 5 )/( x - 5 )
= 2( x + 3 )/( 5 - x )
S△ACQ = 2( x + 3 )/( 5 - x ) * ( 5 - x )/2
= x + 3;
② 当 x > 1 时( 图中蓝线 );
S△ACQ = S△PCQ + S△APC
= CP( x + 1 - 2 )/2 + CP * 2/2
= CP( x + 1 )/2;
直线 AQ y = ax + b;
在点A, a + b = 0,b = -a,y = ax - a = a( x - 1 );
在点Q,a( x - 1 ) = x + 1,a = ( x + 1 )/( x - 1 );
a 表达式中的 x 是 点Q 的 x 值;
在点P,y = 2,x1 - 1 = 2/a,x1 = 2( x - 1 )/( x + 1 ) + 1 = ( 3x - 1 )/( x + 1 );
CP = 5 - x1 = 5( x + 1 )/( x + 1 ) - ( 3x - 1 )/( x + 1 ) = 2( x + 3 )/( x + 1 );
S△ACQ = 2( x + 3 )/( x + 1 ) * ( x + 1 )/2
= x + 3;
故△ACQ 面积 S 与点Q x 值的函数关系是 S = x + 3 。
3、右图
作点C关于 x 轴的对称点 C‘,BC’ 交 x 轴于 P;
BP + PC = BP + PC‘ = BC‘,B、C’ 之间直线最短,所以 BP + PC 有最小值;
BP + PC = BC‘ = √( 7^2 + 2^2 ) = √53;
直线 BC’ y = ax + b;
在点B,3a + b = 5;在点C‘,5a + b = -2;
解方程组,a = - 7/2,b = 31/2,y = -7x/2 + 31/2;
点P -7x/2 + 31/2 = 0,x = 31/7;
点P 坐标 ( 31/7,0 ) 。